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Abstract 

A novel procedure for the design and training of 
artificial neural networks, used for rapid and efficient 
controls and dynamics design and analysis for flexible 
space systems, has been developed. Artificial neural 
networks are employed to provide a means of evaluating 
the impact of design changes rapidly. Specifically, two- 
layer feedforward neural networks are designed to ap- 
proximate the functional relationship between the com- 
ponentkpacecraft design changes and measures of its 
performance. A training algorithm, based on statisti- 
cal sampling theory, is presented, which guarantees that 
the trained networks provide a designer-specified de- 
gree of accuracy in mapping the functional relationship. 
Within each iteration of this statistical-based algorithm, 
a sequential design algorithm is used for the design and 
training of the feedforward network to provide rapid 
convergence to the network goals. Here, at each se- 
quence a new network is trained to minimize the error 
of previous network. The design algorithm attempts 
to avoid the local minima phenomenon that hampers 
the traditional network training. A numerical exam- 
ple is performed on a spacecraft application in order to 
demonstrate the feasibility of the proposed approach. 

Introduction 

The overall design process for aerospace systems 
typically consists of the following steps: design, anal- 
ysis, and evaluation. If the evaluation is not satisfac- 
tory, the process is repeated until a satisfactory design 
is obtained. Dynamics and controls analyses, which 
define the critical performance of any aerospace sys- 
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tem are particularly important. Generally, all aerospace 
systems experience excitations resulting from internal 
and operational disturbances, such as instrument scan- 
ning in space systems or aerodynamic turbulence in air- 
craft. These excitations can potentially interfere with 
the mission of the system. For example, in space sys- 
tems, excessive vibrations could be detrimental to its 
science instruments which usually require consistently 
steady pointing in a specified direction for a prescribed 
time duration, or excessive vibrations due to turbulent 
aerodynamics could diminish the ride quality or safety 
of an aircraft. Typically, in the course of the design 
of a spacecraft, as the definitions and the designs of 
the spacecraft and its components mature, several de- 
tailed dynamics and controls analyses are performed in 
order to insure that all mission requirements are being 
met. These analyses, although necessary, have histori- 
cally been very time consuming and costly due to the 
large size of the aerospace system analysis model, large 
number of disturbance scenarios involved, and the ex- 
tent of time domain simulations that need to be carried 
out. For example, a typical pointing performance anal- 
ysis for a space system might require several months or 
more, which can amount to a considerable drain on the 
time and resources of a space mission. 

It is anticipated that artificial neural networks can 
be used to significantly speed up the design and anal- 
ysis process of aerospace systems. However, there 
are certain drawbacks associated with neural networks. 
These include, the time-consuming nature of the train- 
ing process, training difficulties, such as optimization 
problems, and a lack of a meaningful way to establish 
network accuracy. The focus of this paper is to address 
these specific issues, and develop a methodology for ef- 
ficient and fast training neural networks, with specified 
accuracy, to approximate the functional relationships 
between design change parameters (be they structural 
or material properties, in the disturbance environment, 
or in the control system design) and the performance 
of the systedcomponent. A critical concern with any 
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approximation is its accuracy. Qpical neural network 
training involves the use of a select set of input and 
output data, taken from the functional relationship to be 
approximated. If these training points are chosen judi- 
ciously, the trained neural network should give a very 
good approximation. However, there is no guarantee 
that the neural network will continue to give a good ap- 
proximation of the relationship for those points not in 
the training set. The design methodology presented in 
this paper addresses this problem, in terms of allowing 
the design of neural networks to a specific level of ac- 
curacy (in terms of approximating relationships), for a 
given statistical confidence level, and accounting for in- 
put and output data not used in the original training set. 
Moreover, a sequential training algorithm is presented 
for a two-layer feedforward network, which should pro- 
vide benefits, such as enhanced training speed, and au- 
tomated network architecture design. Numerical exam- 
ples based on a spacecraft application are carried out to 
demonstrate the feasibility of the proposed neural net- 
work design methodology. 

The paper is organized as follows. Following this 
introduction section, brief descriptions on typical (con- 
ventional) dynamics analysis will be given. Next, dis- 
cussions on neural networks, their use to approximate 
functional relationships, and a typical design proce- 
dure, will be presented. Then, the new neural network 
methodology, given in a step by step format, will be pre- 
sented, followed by numerical examples of the proposed 
approach applied to a NASA spacecraft model. Finally, 
a concluding remarks section will close the paper. 

Typical Dynamics and Controls Analysis 

Whatever type of analysis to be performed, it 
would be highly beneficial to the analyst to be able 
to rapidly assess the effects on overall system perfor- 
mance, due to the almost inevitable design changes that 
a system will undergo during its lifetime. During de- 
sign phase of the spacecraft almost all components go 
through changes, with each change having the poten- 
tial to affect the performance of the spacecraft to some 
degree. In many instances, these changes are expected 
to affect the performance of the spacecraft so much as 
to warrant a partial or full analysis of its performance. 
In the area of spacecraft dynamics and controls, these 
type of changes include, changes in the inertia or flex- 
ibility of the structural components which would affect 
the dynamic characteristics of the spacecraft; changes 
in the control system design, hardware, and software; 
or changes in the characteristics of the external and in- 
ternal disturbances that may act on the spacecraft in 
orbit. Now, depending on the nature and extent of 
these changes, there may be a need to reevaluate the 

controlled dynamical performance of the system. The 
dynamical performance could be in terms of pointing 
and jitter performance, tracking performance, closed- 
loop stability margin, and many other forms. The com- 
putational time and cost associated with each of these 
performance analysis may be substantial. For exam- 
ple, to evaluate the effects of changing the location of 
an instrument within the spacecraft bus on the pointing 
stability of another instrument, a full finite element anal- 
ysis, followed by a possible controller redesign, closed- 
loop simulation of spacecraft response for possibly all 
disturbance scenarios, and a jitter and stability analysis, 
are required. Perhaps, even more analysis would be re- 
quired if the controller has to be redesigned. The cost 
of such analyses can be exorbitant, particularly, when 
they have to be repeated several times during the design 
phase. One approach to this problem is to use artificial 
neural networks (ANNs) ,  particularly feedforward net- 
works, for rapid system analysis and design. 

Rapid Analysis and Design with ANN 

The motivation behind the use of an ANN is to 
speed up the analysis or design process substantially. 
The main use of an ANN is in its ability to approxi- 
mate functional relationships, particularly nonlinear re- 
lationships. This can be a static relationship, one that 
does not involve time explicitly, or a dynamics rela- 
tionship, which explicitly involves time. For an ANN 
there is no distinction between a static or dynamic map, 
there is just input/output training data. For example, an 
ANN would be designed to approximate the mapping 
between the first instrument location and the pointing 
performance of the second instrument. Once such a 
network is trained, the pointing performance of the sec- 
ond instrument for a specified location of the first instru- 
ment may be easily and almost instantaneously obtained 
by simulating the ANN for the one input point, corre- 
sponding to the location of the first instrument. It is this 
advantage of A N N s  that promises savings in the overall 
design and analysis time. Although the initial training 
time for an ANN may be long, it can be performed 
during off hours, in a semi-automated manner, without 
much involvement by the designer(s). Another example 
could be an ANN that would be designed to approxi- 
mate the dynamic behavior of a nonlinear component, 
e.g., nonlinear reaction wheel with friction. Dynamic 
approximations via ANN is achieved by using time de- 
lays and feedback of the output back to the input, which 
is defined as recurrence. Such networks are referred to 
as recurrent networks I-*. 

The successful design of an ANN depends on the 
proper training of the network as well as the ability 
to characterize the accuracy of its approximation. The 
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training of the network involves the judicious selection 
of points in the input variable space, which along with 
the corresponding output points, constitute the training 
set. For example, the design and training of an ANN for 
mapping a component parameter to spacecraft perfor- 
mance relationship requires a number of design points 
for use in training. These points generally span the 
range of the changes that the component parameter is 
allowed to have, many of which would cause signifi- 
cant changes in the system model. The proper training 
of the network is the key to its ability to provide a good 
mapping. However, this is possible only if one can 
quantify the degree of accuracy of the approximation of 
the ANN, particularly for points in the parameter space 
not included in the training set. 

Artificial Neural Networks (ANNs) 

Artificial neural networks (ANN:) have grown into 
a large field since their inception, and a complete dis- 
cussion on them is beyond the scope of this paper. 
Instead, this section will present a very brief descrip- 
tion on A N N s .  A N N s  were developed to mimic some 
of the processes of the human brain. They consist of 
groups of elements (called neurons) which perform spe- 
cific computations on incoming data, with interconnec- 
tions which permit data flow from one group of neurons 
to the next, similar to the way groups of real neurons 
receive and transmit information through dendrites and 
axons, respectively, in the brain. Like their biological 
counterparts, ANNs can be trained to perform a vari- 
ety of tasks, such as modeling functional relationships. 
The ANN, when presented with appropriate input and 
output data related to a specific functional relationship, 
can adjust itself such that it can give a good repre- 
sentation of that relationship. This feature is particu- 
larly useful when the relationship is nonlinear and/or 
not well defined, and thus difficult to model by conven- 
tional means. Also ANNs, by their very nature, are a 
perfect fit for efficient parallel computations on digital 
computers. Though there are several types of ANNs, in 
this paper, only the feedforward ANN will be discussed. 

A typical feedforward ANN is depicted in figure 1, 
with m inputs and np outputs, and each circle represent- 
ing a single neuron. The name feedforward implies that 

Input Hidden Hidden Output 
Layer A Layer 1 Layer 2 Layer 

n n 

Figure 1. Typical Feedforward ANN. 

the data flow is one way and there are no feedback paths 
between neurons. The output of each neuron from one 
c o l m  is an input to each neuron of the next column. 
Using the typical naming convention, each column of 
neurons is called a layer, the initial column where the 
inputs come into the ANN is called the input layer, and 
the last layer, i.e., where the outputs come out of the 
ANN, is denoted as the output layer. All other lay- 
ers in between are called hidden layers. These A N N s  
can have as many layers as desired, and each hidden 
layer can have as many neurons as desired. Each neu- 
ron can be modeled as shown in figure 2, with n being 
the number of inputs to the neuron. Associated with 

to Function 
neuron neuron 

Figure 2. Representation of a 
neuron in the feedforward ANN. 

each of the n inputs is some adjustable scalar weight, 
wi ,  i = 1,2,  ..., n, which multiplies that input. In ad- 
dition, an adjustable bias value, b, can be added to the 
summed scaled inputs. These combined inputs are then 
fed into an activation function, which produces the out- 
put of the neuron. The activation function can take 
on many forms to shape the output; three of the more 
common functions are linear, log sigmoid and binary, 
as shown in figure 3. The linear activation function 
simply outputs the input; the log sigmoid function is 
a nonlinear function of the input, with output values 
between 0 and 1; while the binary activation function 
outputs a +1 for non-negative inputs and a -1 for nega- 
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tive inputs. During training, the set of weights and bias 

linear log sigmoid binary 

Figure 3. Three common activation functions. 

terms associated with the neurons are adjusted until the 
output of the ANN matches, to within some specified 
level of tolerance, the true outputs of the function, for 
the same inputs. 

Training of a Feedforward ANN 

The objective is to design and train a feedforward 
network to map the relationship between an n, x 1 in- 
put vector, 6, and an np x 1 output vector yp. In this 
paper, a feedforward network, like the one shown in 
figure 1, but with only one hidden layer, is considered. 
It has been shown in the literature that a feedforward 
network, with only one hidden layer, can approximate 
a continuous function to any degree of accuracy'-3. It 
is obvious that this capability carries over to networks 
with more than one hidden layer. Furthermore, assume 
that the activation function for the output layer is a pure 
linear. The output layer has np nodes, corresponding to 
the elements of vector pp. The number of nodes in 
the hidden layer, nh is arbitrary, however, it has to be 
large enough to guarantee convergence of the network 
to the functional relationship that it is designed to ap- 
proximate, but not too large as to cause overmapping. 
The network equation for this two-layer feedforward 
network is given by 

Here, W, and W2 represent the nh x n, and np x nh 
weighting matrices for the hidden and output layers, 
respectively; bl and b2 are respectively the bias vectors 
for the two layers; f represents the activation function 
for the hidden layer; A is an n, x q matrix denoting the 
collection of q n, x 1 input vectors; and Yn is an np x q 
matrix representing the output of the network. Once the 
number of nodes in the hidden layer has been chosen, 
the network design is reduced to adjusting the weighting 
coefficient matrices, W1 and WZ,  and the weighting 
bias vectors, bl and b ~ .  The parameters of feedforward 
networks are usually adjusted using a gradient method, 
named the back propagation meth0d4s5, or a pseudo- 
Newtonian approach, such as the Levenberg-Marquardt 

technique '. vpically, in these methods, the weighting 
matrices and bias vectors are adjusted to minimize some 
cost function, which is a function of the error of the 
network. The network error is defined as the difference 
between the output of the true system and that of its 
neural network approximation, for a given set of inputs. 
The cost function is usually taken as the sum squared 
error of the network over all of the input sample points. 
If q sets of points are used for training the network, 
then the cost function, in terms of the sum squared error 
(SSE) of the network, can be written as 

un .) a n. 

k = l  r = l  j=1 

where Yd is a np x q matrix of the desired outputs. 
The typical procedure is to keep updating the weights 
and biases until the error E goes below some specified 
tolerance level. At this point, the feedforward network 
is considered trained. 

The use of feedforward A N N s  has some advan- 
tages over the conventional approximation techniques, 
such as polynomials and splines. For example, polyno- 
mials are hard to implement in hardware due to signal 
saturation, and if they are of higher order, there may 
be stability problems in determining the coefficients. 
ANNs,  on the other hand, are very amenable to hard- 
ware implementation. As a matter of fact, to date, sev- 
eral VLSI chips based on multilayer neural network ar- 
chitecture are available74. Also, because of the highly 
interconnected and coupled nature of A N N s ,  they are 
rather robust to hardware failures, since the weight is 
distributed among many nodes. 

There are a few problems associated with neural 
networks. One has to do with the rate of convergence 
during training, in other words, training time. The 
second problem is the proper architecture, e.g., node 
numbers and layers, to use. Third, is the tendency 
of the steepest descent technique, and even, pseudo- 
Newton methods, which are used in the training process, 
to get stuck in local minima. This causes training 
problems and contribute substantially to the time it 
takes to train a network. Finally, the training of the 
network is based solely on the given input and output 
data points; there is no guarantee, when the network is 
given new input data points, that the resulting output 
data will approximate the corresponding true output 
data to within the specified error tolerance to which 
the network was designed. In the next section, a new 
and novel design procedure is presented to address these 
problems with neural networks. 

Network Training for Accuracy and Fast Convergence 
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Mathematical Modeling 

As mentioned earlier, ANNs may be used to ap- 
proximate the functional relationship between changes 
in the system components and the spacecraft perfor- 
mance measures. In the area of dynamics and control, 
these changes may include those effecting the struc- 
tural model of the system, the control system model, 
or the disturbance models. A typical block diagram of 
a controlled spacecraft is given in figure 4. Here, the 
elements of the vector 6, could represent a wide vari- 
ety of potential changes in the structural model, such as 
variation in size for structural element, frequency un- 
certainty/variation in flexible modes, and many others 
changes. Those changes which could impact the struc- 
tural model must necessarily involve some redistribution 
of mass, flexibility, or damping. The elements of 6d 
could represent the changes in the magnitude and phase 
characteristics as well as the location (on the structure) 
of the external and internal disturbances that are to be 
considered. The external disturbances, such as gravity 
gradient torques, atmospheric drag torques, and etc., are 
fairly well understood. However, they generally depend 
on the geometry and inertia of the spacecraft which may 
undergo several changes during the design phase. The 
internal disturbances are typically the result of scanning 
or spinning instruments or components whose charac- 
teristics may change radically in the design phase. The 

disturbances 

WC rtructural 

Figure 4. Typical block diagram of 

elemepts of 6, could represent the changes in the control 
system model. Similar to the structural and disturbance 
models, the control system model may change several 
times during the design phase due to changes in the con- 
trol system hardware characteristics, such as reaction 
wheels, rate gyros, star trackers, and etc., or changes in 
the system software, such as controller gains, dynamics 
(frequency content), saturation limits, and others. 

Now, let 6 be an n, x 1 vector representing the 
overall potential change vector, defined as 

controlled spacecraft. 

The performance of the spacecraft, in the context of dy- 
namics and control, may be divided into time-domain 

measures and frequency-domain measures. Time- 
domain performance measures are typically the pointing 
performance, jitterlstability performance, or tracking 
performance of the spacecraft or its instruments. These 
performance measures are usually obtained from time 
simulations of the controlled spacecraft model, repre- 
sented by the feedback connection of the dynamic model 
of the spacecraft and the full control system model in 
the presence of external or internal disturbances. The 
frequency-domain performance measures are typically 
the stability margins, bode plots, closed-loop band- 
width, and other frequency-based stability and perfor- 
mance measures. The frequency-domain performance 
measures are generally obtained from the analysis of 
the linear closed-loop model of the spacecraft. Let, 
ypm be an r x 1 vector representing all time-domain 
and frequency-domain performance measures that are 
to considered for potential impact by design changes (a 
subset of vector yp). Now, the problem is to design an 
ANN which can map, to a specified degree of accuracy, 
the relationship between the potential design change 
vector 6 and the spacecraft performance measure vector 
Ypm 

Training with Fast Convergence 

Here, a novel algorithm is presented to deal with 
the three problems associated with the training of ANNs, 
namely, size of the network, excessive training time, 
getting stuck in a local minima. The algorithm is a se- 
quential algorithm, wherein at each step a new feedfor- 
ward network is designed and trained which minimizes 
the current error function, which represents the level of 
achievement by all the previous ANNs. Assume that a 
ANN map is desired for a training data [X, Y], where X 
represents an input sequence, and Y denotes an output 
sequence. The sequential training algorithm is summa- 
rized as follows: 

a. Choose a feedforward network with one hidden 
layer. The hidden layer can be any type of layer, 
such as tan sigmoid, log sigmoid, etc. The output 
layer should be a pure linear layer. 
Use a small to moderate number of nodes, no, for 
the hidden layer. 
Based on a desired network error tolerance, etol ,  
begin adjusting the parameters of the two layer 
feedforward network, namely, Wf , bi , W i  , and b i .  
Here, the subscript indicates the layer number and 
the superscript denotes the network number. Note 
that techniques, such as back-propagation proce- 
dure, a pseudo-Newtonian technique, such as the 
Levenberg-Marquardt algorithm, or any other op- 
timization technique may be used to perform the 

b. 

c. 
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d. 

e. 

f. 

g* 
h. 

1. 

j. 

k. 

process of adjusting the network parameters to 
minimize the error. 
Stop the training process as soon as the network 
error goal is achieved or some measure of the 
rate of decrease of the network error (learning 
rate), for example the decrease in the network 
error from some previous epoch to the current 
epoch, gets below a designer-defined level. If the 
network error goal is attained, the training process 
is finished, otherwise, continue with the algorithm. 
Update the overall weighting and bias matrices, 
and activation functions 

W,F = W i  ; BF = B' 1 

f F =  f' 

Compute the current network error at each training 
point from Eq. (1) as follows: 

D l = Y -  [wi (fl(w;x + a:)) + (5) 

where f' () represents the activation function used. 
Use the pair [X, 011 as the new training data. 
Choose a new feedforward network with the same 
architecture as the previous, i.e. one hidden layer 
and one output layer. The hidden layer can be any 
type of layer, such as tan sigmoid, log sigmoid, 
etc., and does not have to be of the same type as 
that for the previous network. The output layer 
should be a pure linear layer. 
Use a small to moderate number of nodes, nl, for 
the hidden layer. It is recommended to choose 
the node number randomly from a range defined 
by the designer. At any rate, it is best that the 
number nodes chosen is different from that used 
in the previous network. This would make sure 
that the number of design variables (degrees of 
freedom) changes from the previous problem, so 
that there is a lesser chance of continuously getting 
stuck in a local minima. 
Based on the same desired network error tolerance, 
et, l ,  begin adjusting the parameters of the two layer 
feedforward network, namely, Wf, b f ,  Wz, and bi .  
If the network error goal is achieved, then form the 
overall network parameters as 

f F =  [F] 
and the training process is finished. 

1. If the rate of decrease of the network, as discussed 
in step (d), gets below a designer-defined level, 
stop the training process and update the current 
network parameters as 

m. Compute the current network error at each training 
point as follows: 

D2 = DI - [Wi(f2(W;X + a:)) + bi] (8) 

In the first variation of the algorithm, use the pair 
[X,D2] as the new training data, and repeat the 
algorithm, beginning from step (h), until one of 
three things happens: (i) network error goals are 
attained at some sequence; (ii) a designer-defined 
limit on the total number of training epochs (steps) 
is reached; or (iii) a designer-defined limit on the 
number of training sequences is reached. 
In the second variation of the algorithm, repeat 
the steps, beginning from step (a), but using the 
overall weighting and bias matrices, and activation 
functions for the initial guess, i.e., 

n. 

0. 

w: w:; B; +- B[ 

f1 +- f F  

(9) W i  t W; ; Bi + BF 

This variation could lead to smaller overall net- 
works (which satisfy the SSE goal), however, it 
can require substantially longer training time since 
the size of the network increases much faster as 
compared to the first variation of the algorithm. 

As mentioned previously, even if the ANN is 
trained such that the network error is exactly zero there 
are no guarantees that it can provide an accurate approx- 
imation for points not in the training set. Of course, as 
the number of training points increase one expects that 
the accuracy of the network would improve. However, 
there is no systematic way of establishing a priori this 
increase in the accuracy of the network or ascertain- 
ing that it does occur. Nonetheless, for an ANN to be 
useful in approximating or mapping functional relation- 
ships there must be a means of quantifying its accuracy. 
To this end, an algorithm based on statistical theory is 
developed and presented herein. The approach taken in 
the algorithm is to follow a binomial experimentation 
concept in order to establish confidence intervals on the 

6 
American Institute of Aeronautics and Astronautics 



accuracy of the ANN’S approximations. Once a network 
is trained, using the points in the training set, and an 
acceptable tolerance level for the approximation error is 
defined (the error between the exact functional relation- 
ship and ANN at any point in the design space), then the 
problem of network accuracy may be defined in terms 
of a yes or no question, that is whether the network er- 
ror at any point in the design space is greater than the 
specified tolerance level or not. Now, if one randomly 
selects a number of points in the design (input) space, 
for every point there would be two possible outcomes to 
this question. Either the network error, corresponding 
to the design point, is greater than the tolerance level 
or it is not. Experiments of this type, wherein repeated 
independent trials with two possible outcomes are per- 
formed, are known as binomial experiments*. 

Assume that n trials have been performed wherein 
for every trial the network error is simulated for each 
input point, and the trial is considered a success if the 
network is greater than the tolerance level, and a failure 
if it is not. Denote the number of successes in the 
n trials by the binomial random variable X and the 
probability of success by p. A point estimator for p is 
given by p = 6. Now, if the unknown probability p is 
not expected to be too close to zero or one, a confidence 
interval for p may be established using the distribution 
of the point estimator j3 through the following theorems. 

Theorem 1. If X is a binomial random variable with 
mean p = np and variance u2 = npq, then the limiting 
form of the distribution of 

X - np z=- a’ 
as n -+ 00, is the standardized normal distribution 
n ( z ;  0, l ) .  

Proof: is provided in ref. 9. The normal distribution 
is a very good approximation when the sample size n 
is large and p is close to 0.5. It is even a fairly good 
approximation for small n so long as p is not very close 
to 0 or 1. From this theorem, the distribution of @ is 
approximately normally distributed with mean, pp = 

a confidence interval for the parameter p is established 
in the following theorem. 

E(  7) X = p ,  and variance, ui = g$ / n 2  = p q / n .  Now, 

Theorem 2. For n 2 30; a (1 - a)lOO% confidence 
interval for the binomial parameter p is approximately 

where p is the proportion of success in a random sample 
of size n , 4 = 1 - p ,  and Zap is the value of the 

standard normal curve leaving an area of a/2 to the 
right. 

Proof: is given in ref. 9. If p is the center of a 
(1 - a)lOO% interval, then p estimates p without error. 
However, in most cases p will not be equal to p , but the 
size of the difference will be less than Z a p f i  with 
(1 - a)lOO% confidence. It should be noted that only 
the upper bound expression in Eq. (11) is useful for 
application to the accurate design of ANN. The size of 
the sample required to ensure that the error in estimating 
p by p will be less than a number, say e, is given in 
the following theorem. 

Theorem 3. If f i  is used as an estimate of p, one can be 
(1 - a)100% confident that the error will be less than 
a specified magnitude e when the sample size is 

Proof: is given in ref. 9. It is observed from Eq. (12) 
that the sample size needed is a function of 6, which 
itself is computed from the sample. There are two ways 
around this. One is to take a preliminary small sample 
with nl 2 30 to obtain 6, and use that estimate in Eq. 
(12) to compute the sample size needed for the desired 
accuracy. The second option is to use the upper bound 
expression in Eq. (12), instead of the equality term, 
which does not depend on p. However, one must be 
aware that upper bound expression generally provides 
conservative results, i.e., it would lead to large values 
of the required sample size. It is noted that the upper 
bound expression becomes exact at p = 0.5. 

Now, with aid of these theorems, an algorithm is 
developed to train feedforward networks with quantified 
degree of accuracy, given a confidence level. The 
algorithm is presented in the following steps. 

Design Algorithm 

a. 

b. 

Define a training set {Ao, Yim} to be used as the 
initial training set for the network design. 
Choose a feedforward network with one hidden 
layer. The hidden layer can be any type of layer, 
such as tan sigmoid, log sigmoid, etc. The output 
layer should be a pure linear layer. 
Train the network using the sequential algorithm 
described earlier. If, however, the optimization 
does not converge, one has to either increase the 
limit on the number of epochs or sequences of net- 
works, decrease the desired network error toler- 
ance, or restart the training with a different set of 

c. 
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d. 

e. 

f. 

g. 

h. 

i. 

j. 

k. 

initial conditions. The initial values of the weights 
of the ANN before training are the initial condi- 
tions. 
Choose a confidence level a for the network ac- 
curacy. 
Choose a desired tolerance for the network error, 
etol. This is the acceptable difference between 
the ANN’S approximation and the exact functional 
value(s) at any point. 
Choose a tolerance level, p to ( ,  for the probability of 
the network exceeding the desired error tolerance. 
Take m samples of the network error by randomly 
choosing m points in the input (design) space, 
A1 E {61,62,. . . , bm} and computing the network 
error for each of the points. Note that none of m 
points should be in the initial training set (A’). 
Moreover, the network errors are computed by 
simulating the ANN as well as the true function 
for each of the design points and subtracting one 
from the other. The sample size rn must at the least 
be greater than or equal to 30, however, and needs 
to be assigned based on the degree of confidence or 
accuracy that is desired. Let e l ,  e 2 , .  . . , e m  denote 
the sampled network errors. 
Define trial success as the network error exceeding 
the desired tolerance, and count the number of 
successes, n, , in the m trials above. Note that if no 
successful event is observed in m trials, additional 
trials (samples) must be taken, up to a designer- 
defined limit, until a successful event is observed. 
Additional discussion is provided on this point later 
in this section. 
Compute the sample proportion, p and 6 

Compute the upper bound confidence level on the 
probability of network error exceeding eto[ 

if p ,  5 ptol, accept the designed network. Other- 
wise, add the m sample points to the training set, 
i.e., A = [Ao A’]; Ypm = [Yim Ybm], and re- 
design the network by going back to step (a) of 
the algorithm and repeating the entire algorithm. 
This procedure may be repeated until convergence 
is achieved or a limit on the number of iterations, 
as defined by the designer, is reached. It should 
be mentioned that the size of the ANN (nodes in 
the hidden layer) may need to be increased if the 
learning rate of the network becomes too slow dur- 
ing training or the desired network error tolerance 
can not be achieved. 

As mentioned in step (g) of this algorithm, there is a 
possibility that no successful event is observed in the 
m trials, In such a case, one has to take more samples 
until a successful event is observed. However, a limit 
should be established on the sample size such that if 
no successful event is observed the trained ANN is 
accepted. Such a limit may be established from theorem 
3. For example, for a sample size of s, if no successful 
event is observed, it implies that p < 5. Assume that a 
(1 - a)lOO% confidence is desired with 1% tolerance 
on the true probability of success, then from theorem 3, 
the sample size necessary for this level of tolerance and 
accuracy is established as follows 

ZZI2Pq  ̂ 100002~,2 
n=-< 

e2 - S 
(15) 

Which would be satisfied if 

s 2 1002,/2 (16) 

For example, for 95% confidence level, Z,l2 = 1.96, 
so that the desired network accuracy would be obtained 
if the sample size is not smaller than 196. 

Numerical Example 

In order to illustrate the feasibility of the proposed 
ANN design and training approach, it is used in the de- 
sign and training of neural networks used in a dynamics 
and controls analysis application for the NASA’s Lewis 
spacecraft. A structural model of the spacecraft, con- 
sisting of the rigid-body modes, and the first ten flexi- 
ble modes, is used in the analysis. The attitude control 
system model included full models (as they were avail- 
able) of reaction wheels, rate gyros, and the star tracker. 
However, a linearized model of the wheel dynamics was 
used. A Kalman filter was designed and used to estimate 
the vehicle’s attitude from the sensor data. The reac- 
tion wheel dynamics included the linear friction model, 
limits on the input command voltages and digital volt- 
age quantization, as well as the quantization effects on 
wheel RPM outputs due to the wheel’s optical encoder. 
To each gyro dynamic model output channel, random 
signals were added, which represent random drift walk 
and instrument noise. The modeling of the star tracker 
included noise and alignment errors. The spacecraft dis- 
turbances included environmental disturbances, which 
included gravity gradient torques, drag torques, mag- 
netic unloading, as well as, a periodic disturbance at 
0.3 Hz in roll and yaw axes. Both, the spacecraft struc- 
ture and the attitude control system were modeled using 
the various blocks of the SIMULINK software package. 

Here, assume that there is uncertainty in the mag- 
nitudes of the first two flexible modes, and therefore it 
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is desired to design a neural network to map the rela- 
tionship between the changes in the frequencies of those 
modes as well as changes in the attitude control band- 
width to the dynamic performance of the spacecraft. 
In this case, the performance is taken as peak-to-peak 
steady-state response in the pitch axis. A multiplicative 
scaling variable was used for each of the input vari- 
ables. The scaling variable associated with the flexible 
mode frequencies had a range of 0.85 to 1.2 each, and 
the scaling variable associated with the controller band- 
width had a range of 0.5 to 1.5. With a uniform intervals 
of 0.05 and 0.2 used for the frequency scaling variables 
and bandwidth scaling variables, respectively, an initial 
training set, consisting of 384 training points, was gen- 
erated. The training data was generated by performing a 
closed-loop dynamic simulation of the system for each 
combination of values of the scaling variables, and for 
the disturbances discussed earlier. Each simulation was 
a discrete linear simulation, and was run for one orbit, 
with each orbit assumed to be 5996 seconds in duration. 
After each simulation run, the peak-to-peak response of 
the spacecraft in the pitch axis was computed and placed 
in the appropriate location in the training data output. It 
was observed from the training data that certain combi- 
nation of values of scaling variables resulted in dynamic 
instability, resulting in huge peak-to-peak response lev- 
els. These values were all capped at lo00 arc-sec to 
avoid numerical conditioning problems. 

Following the statistics-based, sequential (first 
variation), algorithm outlined in the paper, a two- 
layer feedforward network, with a tan sigmoid hidden 
layer and a pure linear output layer, was designed and 
trained to provide the desired mapping. The network 
was designed to have a 99% confidence level that the 
probability of its approximation exceeding 5% error 
level would be no greater than 5 percent. The entire 
training process was performed using ’trainlm’ routine 
of the. MATLAB’s Neural Network Toolbox, which is 
based on Levenberg-Marquardt training approach. The 
history of the training process is provided in Table 1. 
First, a two-layer feedforward network with six nodes 
was initialized and trained, with a sum squared error 
(SSE) goal of 0.0001 for the output normalized data 
(normalized with respect to maximum absolute value). 
This network reduced the SSE to 0.0003686 after 400 
epochs of training. However, the training of this net 
was stopped after 400 epochs due to lack of progress in 
reducing the SSE (less than 0.1% change in 25 epochs). 
Following the sequential approach, the network error 
was computed and used as the new training output data 
for a next net. The number of nodes in the second net 
was randomly chosen between 3 and 8, and turned out to 
be 5. The second ANN reduced the SSE to 0.0002824 
after 500 epochs of training, at which time the training 

was stopped due to lack of progress. ,The procedure 
continued on, designing and training three more ANNs, 
before the target SSE was reached, as indicated in Ta- 
ble l. Now, following the statistics-based approach, 

Table 1. Training History, first ANN 

SSE No. of No. of 
ANN No Nodes Epochs 

1 6 400 0.0003686 

2 5 500 0.0002824 

3 4 250 0.0002694 

4 5 750 0.0002403 

5 7 591 0.0000949 

Total 27 249 1 

100 points in the feasible range of the variable space 
were chosen randomly, and then used in the discrete 
simulation to generate peak-to-peak response values for 
the system. Next, each point in the test data was also 
simulated using the neural network trained initially. For 
each test point, the output of the neural network was 
compared to the true output (simulation results), which 
resulted in 19 out of the 100 test points having a net- 
work error greater than 5%, the desired accuracy. The 
proportion from Eq. (13) turns out to be 0.19, which 
results in the upper bound value for the probability of 
network exceeding the desired accuracy, from Eq. (14), 
of 0.2912, for a 99% confidence level. This was a well 
above the desired tolerance on the probability of failure, 
which was set at 5 percent. Therefore, the initial ANN 
was rejected, and the test data was added to the original 
training data to form the updated training data to be 
used to train the next network. 

Initializing the ANN to be trained at the weights 
and biases of the first network, a two-layer feedforward 
network with 27 nodes, the network was trained follow- 
ing the sequential algorithm used in the first. With the 
SSE goal of 150 (for the actual (non-normalized) out- 
put), and using the Levenberg-Marquardt routine, the 
network reduced the SSE from 1.59e+6 to 232.65, after 
800 epochs of training, before training was stopped due 
to lack of progress. This network reduced the SSE to 
149.5 after 400 epochs of training. Following the se- 
quential approach, the network error was computed and 
used as the new training output data for a next net. The 
number of nodes in the second net was randomly chosen 
between 3 and 8, and turned out to be 8. The second 
ANN reduced the SSE to 149.5, after 585 epochs of 
training, where at the SSE goal was reached. The over- 
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all training history for the second network is given in 
Table 2. 

Table 2. Training History, second ANN 

SSE No. of No. of 
Nodes Euochs 

1 27 800 232.65 

2 8 585 149.50 

Total 35 1385 

Similar to the treatment for the previous network, 
approach, 100 points in the feasible range of the vari- 
able space were chosen randomly, and then used in the 
discrete simulation to generate peak-to-peak response 
values for the system. Next, each point in the test data 
were also simulated using the second neural network. 
For each test point, the output of the neural network 
was compared to the true output (simulation results), 
which resulted in none out of the 100 test points having 
a network error greater than 5%, the desired accuracy. 
Although, the proportion from Eq. (13) turns out be 
null, which results in the upper bound value for the 
probability of network exceeding the desired accuracy, 
from Eq. (14), being 0. However, it should be re- 
membered that the upper bound on the probability, as 
represented by Eq. (14), is not valid at probabilities too 
close to 0 or 1. However, even if one conservatively 
assumes that the proportion was at 0.01 (which corre- 
sponds to 1 failure in 100 samples), the upper bound 
value for the probability of network exceeding the de- 
sired accuracy becomes 0.0357, which is well below the 
desired level of 0.05, and thus the network is accepted. 

Concluding Remarks 

This paper presented a novel methodology for ef- 
ficient and fast training neural networks, with specified 
accuracy. Neural networks were considered within the 
context of dynamics and controls analysisldesign to ap- 
proximate the functional relationships between design 
change parameters (be they structural or material prop- 
erties, in the disturbance environment, or in the con- 
trol system design) and the performance of the sys- 
tedcomponent. A critical concern with any approxi- 
mation is its accuracy. ljpical neural network training 
involves the use of a select set of input and output data, 
taken from the functional relationship to be approxi- 
mated. If these training points are chosen judiciously, 
the trained neural network should give a very good ap- 
proximation. However, there is no guarantee that the 
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neural network will continue to give a good approxi- 
mation of the relationship for those points not in the 
training set. The design methodology presented in this 
paper addressed this problem, in terms of allowing the 
design of neural networks to a specific level of accuracy, 
for a given statistical confidence level, and account- 
ing for input and output data not used in the original 
training set. Specifically, two-layer feedforward neu- 
ral networks are designed to approximate the functional 
relationship between the componenthpacecraft design 
changes and measures of its performance. A training 
algorithm, based on statistical sampling theory, was pre- 
sented, which guarantees that the trained networks pro- 
vide a designer-specified degree of accuracy in map- 
ping the functional relationship. Within each iteration 
of this statistical-based algorithm, a sequential design 
algorithm was used for the design and training of the 
feedforward network to provide rapid convergence to 
the network goals. Here, at each sequence a new net- 
work was trained to minimize the error of the previ- 
ous network. The design algorithm attempts to avoid 
the local minima phenomenon that hampers the tradi- 
tional network training, thereby speeding up the training 
process. Numerical examples carried out on a NASA 
spacecraft application demonstrated the feasibility of the 
proposed neural network design methodology. 
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